
22 570684 Ch17.qxd 3/31/04 3:00 PM Page 218

218 Part III: Giving Your Programs the Ability to Run Amok

The while keyword
(a formal introduction)
The while keyword is used in the C language to repeat a block of statements.
Unlike the for loop, while only tells the computer when to end the loop. The
loop must be set up before the while keyword, and when it’s looping, the
ending condition — the sizzling fuse or ticking timer — must be working. Then,
the loop goes on, la-de-da, until the condition that while monitors suddenly
becomes FALSE. Then, the party’s over, and the program goes on, sadder but
content with the fact that it was repeating itself for a while (sic).

Here’s the rough format:

starting;
while(while_true)
{

statement(s);
do_this;

}

First, the loop must be set up, which is done with the starting statement. For
example, this statement (or a group of statements) may declare a variable to
be a certain value, to wait for a keystroke, or to do any number of interesting
things.

while_true is a condition that while examines. If the condition is TRUE, the
statements enclosed in curly braces are repeated. while examines that condi­
tion after each loop is repeated, and only when the statement is FALSE does
the loop stop.

Inside the curly braces are statements repeated by the while loop. One of those
statements, do_this, is required in order to control the loop. The do_this part
needs to modify the while_true condition somehow so that the loop eventually
stops or is broken out of.

While loops have an advantage over for loops in that they’re easier to read
in English. For example:

while(ch!=’~’)

This statement says “While the value of variable ch does not equal the
tilde character, repeat the following statements.” For this to make sense,
you must remember, of course, that ! means not in C. Knowing which sym­
bols to pronounce and which are just decorations is important to understand­
ing C programming.

